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We study a general class of Euler equations driven by a forcing with a commutator structure of the form
[L, u](ρ) = L(ρu) − L(ρ)u, where u is the velocity field and L is the ‘action’ which belongs to a rather
general class of translation invariant operators. Such systems arise, for example, as the hydrodynamic
description of velocity alignment, where action involves convolutions with bounded, positive influence
kernels, Lφ(f ) = φ ∗ f . Our interest lies with a much larger class of L’s which are neither bounded nor
positive.

In this article, we develop a global regularity theory in the one-dimensional setting, considering three
prototypical subclasses of actions. We prove global regularity for bounded φ’s which otherwise are allowed
to change sign. Here we derive sharp critical thresholds such that sub-critical initial data (ρ0, u0) give rise to
global smooth solutions. Next, we study singular actions associated with L = −(−∂xx)

α/2, which embed
the fractional Burgers’ equation of order α. We prove global regularity for α ∈ [1, 2). Interestingly, the
singularity of the fractional kernel |x|−(1+α), avoids an initial threshold restriction. Global regularity of
the critical endpoint α = 1 follows with double-exponential W1,∞-bounds. Finally, for the other endpoint
α = 2, we prove the global regularity of the Navier–Stokes equations with density-dependent viscosity
associated with the local L = ∂xx .
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1. Fundamentals Euler equations with a commutator structure

We are concerned with a new class of Eulerian dynamics where a velocity field, u : Ω × R+ �→ R
n, is

driven by the system

{
ρt + ∇ · (ρu) = 0,

ut + u · ∇u = T (ρ, u),
(x, t) ∈ Ω × R+. (1.1)

†Present address: Institute for Theoretical Studies (ITS), ETH, Clausiusstrasse 47, CH-8092 Zurich, Switzerland.

© The authors 2017. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and
reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contactjournals.permissions@oup.com

file:journals.permissions@oup.com


R. SHVYDKOY AND E. TADMOR 2

The main feature here is the commutator structure of the forcing

T (ρ, u) = [L, u](ρ) := L(ρu) − L(ρ)u (1.2)

expressed in terms of a self-adjoint operator L : R �→ R (the action on ρu is interpreted component
wise). We focus on the Cauchy problem over the whole space Ω = R

n or over the torus Ω = T
n.

A typical example is provided by radial mollifiers, L(f ) = φ ∗ f , associated with integrable φ ∈ L1,
which yields the commutator forcing

T (ρ, u)(x) = φ ∗ (ρu) − (φ ∗ ρ)u =
∫

Rn
φ(|x − y|)(u(y) − u(x))ρ(y) dy. (1.3)

The corresponding system (1.1) and (1.3) arises as macroscopic realization of the Cucker–Smale agent-
based dynamics (Cucker & Smale, 2007a,b), which describes the collective motion of N agents, each of
which adjusts its velocity to a weighted average of velocities of its neighbors dictated by an influence
function φ,

⎧⎪⎨
⎪⎩

ẋi = vi,

v̇i = 1

N

N∑
j=1

φ(|xi − xj|)(vj − vi),
(xi, vi) ∈ R

n × R
n.

For large crowds, N � 1, one is led to the pressureless hydrodynamic description (1.1) and (1.3), under
a mono-kinetic ansatz (Ha & Tadmor, 2008; Carrillo et al., 2017). For recent results which justify the
passage to Cucker–Smale kinetic and hydrodynamic descriptions with weakly singular kernels φ (of
order < 1

2 ) we refer to Peszek (2015) and Poyato & Soler (2016). The global regularity of such one-
and two-dimensional systems (1.1) and (1.3) was studied in Tadmor & Tan (2014), Carrillo et al. (2016)
and He & Tadmor (2016). For bounded, positive mollifiers it was shown that there exist certain critical
thresholds in the phase space of initial configurations, (ρ0 > 0, u0), such that sub-critical initial data
propagate the initial smoothness of (ρ(·, 0), u(·, 0)) = (ρ0, u0) globally in time.

Our interest lies in the global regularity of (1.1) and (1.2) for a much larger class of L’s which are
neither positive nor bounded. We have three typical examples in mind.

1.1. Examples

Consider L = Lφ of the form

Lφ(f )(x) :=
∫

Rn
φ(|x − y|)(f (y) − f (x)

)
dy. (1.4)

Our first example involves bounded kernels with a finite positive mass, denoted φ ∈ L∞
# := {φ ∈ L∞ | 0 <∫

φ(r) dr < ∞}, but otherwise are allowed to change sign. The resulting commutator Tφ = [Lφ , u](ρ)

coincides with the usual convolution action in (1.3),

T (ρ, u)(x) = [Lφ , u](ρ)(x) =
∫

Rn
φ(|x − y|)(u(y) − u(x))ρ(y) dy, φ ∈ L∞

# . (1.5)
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The action Lφ in (1.4) and its commutator forcing (1.5) are well defined for nonintegrable φ’s as
well. As a second example we consider, φα(x) := |x|−(n+α), associated with the action of the fractional
Laplacian1 Lα(f ) = −Λα(f ), α < 2,

Λα(f )(x) = p.v.
∫

Rn

f (x) − f (y)

|x − y|n+α
dy, Λα = (−Δ)α/2, 0 < α < 2.

The corresponding forcing is then given by the singular integral

T (ρ, u)(x) = −Λα(ρu) + Λα(ρ)u = p.v.
∫

Rn

u(y) − u(x)

|x − y|n+α
ρ(y) dy. (1.6)

The operator T in (1.6) is well defined as a distribution over the whole space Ω = R
n. When dealing

with the torus Ω = T
n, the forcing T can be expressed in terms of the periodized kernel φα(z) =∑

k∈Zn
1

|z+2πk|n+α .
Finally, as a third example we consider the full Laplacian L = Δ corresponding to the limiting

case α = 2 with forcing T (ρ, u) = ρΔu + 2(∇ρ · ∇)u. This leads to the density-dependent system of
pressureless Navier–Stokes equations

{
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇(ρu ⊗ u) = ∇(ρ2Du), Du = {∂iuj}.
(1.7)

We close by noting that these equations are typically come ‘equipped’ with certain standard global bounds.
Thus, in addition to the obvious conservation of mass,

M0 :=
∫

ρ0(x)dx ≡
∫

ρ(x, t) dx,

we have, since L is assumed self-adjoint,
∫ (

ρL(ρu) − L(ρ)ρu
)

dx = 0, conservation of momentum,∫
Rn ρu(·, t) dx = ∫

Rn ρ0u0 dx. Also for Lφ we have the ρ-weighted energy-enstrophy bound

∫
Rn×{T}

ρ|u|2 dx +
∫ T

0

∫
Rn×Rn

ρ(x)ρ(y)φ(|x − y|)|u(x) − u(y)|2 dx dy dt =
∫

Rn
ρ0|u0|2 dx. (1.8)

1.2. The one-dimensional case. Statement of main results

The main focus of this article is one-dimensional case where (1.1) and (1.2) read,{
ρt + (ρu)x = 0,

(ρu)t + (ρu2)x = ρL(ρu) − ρL(ρ)u,
(x, t) ∈ Ω × R+. (1.9)

We shall make a detailed study on the propagation of regularity of (1.9) for sub-critical initial data,
dictated by the properties of L.

†We shall abuse notations by abbreviating Lφα := Lα since the distinction is clear from the context of the sub-index involved.
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We begin by recalling that (1.9) with L = Lφ amounts to the one-dimensional Cucker–Smale ‘flocking
hydrodynamics’ (Cucker & Smale, 2007a,b; Motsch & Tadmor, 2014; Carrillo et al., 2017)

⎧⎪⎨
⎪⎩

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x =
∫

R

φ(|x − y|)(u(y) − u(x)
)
ρ(x)ρ(y) dy,

(x, t) ∈ Ω × R+. (1.10)

Global regularity for bounded positive φ’s persists if and only if the initial data are sub-critical in the
sense that (Carrillo et al., 2016)

u′
0(x) + φ ∗ ρ0(x) � 0 for all x ∈ R. (1.11)

In Section 3.1, we extend this regularity result for general bounded φ’s whether positive or not. The
results below are stated over the torus, Ω = T

1, for the purely technical reason of securing a uniform lower
bound of the density away from vacuum, which in turn provides uniform parabolicity of the u-equation.
However, the local well-posedness follows from our analysis over Ω = R line as well.

Theorem 1.1 Consider the hydrodynamics flocking model (1.10) with a bounded mollifier, φ ∈ L∞
#

having a positive total mass I(φ) = ∫
φ(r)dr > 0, and subject to sub-critical initial data (ρ0, u0) ∈

(L1
+(T1), W 1,∞(T1)), such that

u′
0(x) + φ ∗ ρ0(x) > 0, x ∈ T

1.

Then (1.10) admits global smooth solution.

Next, we extend this result to the case of the positive singular mollifiers φα(r) = |r|−(1+α)

⎧⎪⎨
⎪⎩

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x = p.v.
∫

Ω

u(y) − u(x)

|x − y|1+α
ρ(x)ρ(y) dy, α < 2,

(x, t) ∈ Ω × R+. (1.12)

Here we follow a general iteration scheme for proving (higher) regularity outlined in Section 2, in which
one seeks bounds on the density, ρ, and then bounds the ‘action’ L(ρ). The uniform bounds on the
density for all three cases are worked out in Section 3. We then turn to secure bounds on the action
or—what amounts to the same thing, uniform bound on ux, which in turn yields global well-posedness.
In Section 4, we discuss the global regularity for bounded mollifiers L = Lφ in (1.10), and in Section 5
for the Navier–Stokes equations, L = Δ,

{
ρt + (ρu)x = 0,

(ρu)t + (ρu2)x = (ρ2ux)x,
(x, t) ∈ Ω × R+. (1.13)

This is the one-dimensional special case of the general class of Navier–Stokes equations studied in Bresch
et al. (2007).
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Theorem 1.2 Consider the Navier–Stokes equations (1.13) subject to initial data (u0, ρ0) ∈ H2(T1) ×
H3(T1). Then (1.13) admits a global solution in the same class.

Finally, in Section 6 we prove the global smooth solutions for the commutator forcing associated with
the singular action Lα(ρ) = −Λα(ρ) corresponding to singular kernel φα(r) = |r|−(1+α), 1 � α < 2.

Theorem 1.3 Consider the system of equations (1.12) with 1 � α < 2 subject to initial data (u0, ρ0) ∈
H3(T1) × H2+α(T1). Then (1.12) admits a global solution in the same class.

It is remarkable that the singularity of φα = |x|−(1+α) removes the requirement for a finite critical
threshold which is otherwise called for integrable φ ∈ L∞

# . Specifically, in Section 3.2 we prove that for
any singular kernel such that limr↓0[mod 2π ] r ·min|z|�r φ(|z|) ↑ ∞, the density of the corresponding system
(1.10) remains uniformly bounded which in turn drives the global regularity. The analysis of equation
with the singular action Lα becomes critical when α value reaches 1. The necessary W 1,∞-bounds on the
solution pair (u, ρ) in this case admit double-exponential growth in time, consult (6.22).

Remark 1.4 (On the singular case of fractional order α ∈ (0, 1)). Recently, shortly after the release of
our results at arXiv:1612.04297, we learned of another approach to the regularity of (1.12) with singular
kernels φα of order α ∈ (0, 1) that appeared in the work of Do et al. (2017). In their alternative approach,
based on a conservation law for a first-order quantity as in Section 2.2 below and propagating a modulus of
continuity adapted to the problem at hand, (1.12)α is treated as critical system for the full range α ∈ (0, 1).
However, the case α = 1 appears to be a ‘critical barrier’ for passing to the range α ∈ [1, 2) treated in
this article.

2. Propagation of global regularity A general iteration scheme

2.1. L∞-bound of the velocity

We assume that L satisfies the following monotonicity condition. Let x+ = arg max
x

g(x) and x− =
arg min

x
g(x). Then for f � 0

⎧⎨
⎩

L(fg)(x+) � L(f )(x+)g(x+), g(x+) = max
x

g(x)

L(fg)(x−) � L(f )(x−)g(x−), g(x−) = min
x

g(x)
(2.1)

which holds for L = Lφ with positive φ’s. Application of (2.1) with (f , g) = (ρ, u) implies that

T (ρ, u)(x+) � 0 � T (ρ, u)(x−), x± =
{

arg max u(·, t)

arg min u(·, t)

and yields that u in (1.9) (and likewise—the velocity components ui in (1.1)) satisfy maximum/minimum
principle

min
x

ui(x, 0) � ui(x, t) � max
x

ui(x, 0). (2.2)

Likewise, ‖u(·, t)‖L∞ remains finite for φ ∈ L∞
# with arbitrary sign.
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2.2. Critical threshold and a first order conservation law

We outline our general strategy for tracing the global regularity of (1.9). The key observation is that the
commutator form of (1.9) entails the transport of ux +L(ρ) away from vacuum. To this end, differentiate
(1.1) to find that u′ := ux satisfies

u′
t + uu′

x + (u′)2 = L(ρu)x − uL(ρ)x − u′L(ρ). (2.3)

For the latter we use the density equation, L(ρu)x = L
(
(ρu)x

) = −L(ρ)t to conclude

(u′ + L(ρ))t + u(u′ + L(ρ))x + u′(u′ + L(ρ)) = 0.

This calls for introduction of the new variable,2 e := u′ + L(ρ), which is found to satisfy

et + (ue)x = 0, e = u′ + L(ρ). (2.4)

Together with the density equation, this yields that e/ρ is governed by the transport equation

(
e

ρ

)
t

+ u

(
e

ρ

)
x

= 0. (2.5)

Hence e/ρ remains constant along the characteristics ẋ(t) = u(x(t), t),

e(x(t), t)

ρ(x(t), t)
= e0(x)

ρ0(x)
. (2.6)

It follows that if e0/ρ0 is allowed to have singularities, then these initial singularities will propagate
along characteristics and a solution of (1.9) will consist of strips of regularity trapped between the curves
carrying these singularities. To avoid this scenario, calls for the following bound to hold.

Assumption 2.1 [Critical threshold] There exist finite constants η− � 0 < η+ such that

η− � e0(x)

ρ0(x)
� η+ for all x ∈ Ω . (2.7)

Remark 2.2 We note in passing that integration of (2.7) yields η−M0 �
∫ (

u′
0 +L(ρ0)

)
dx. Hence, since

Lφ(ρ0) has zero mean and u(·, t) is either periodic or assumed to have vanishing far-field boundary values,
it follows that (2.7) requires η− � 0.

We will investigate the propagation of regularity of solutions subject to sub-critical initial data (2.7).

†The distinction between the variable ‘e’ and the usual number ‘e’ will be clear from the text.
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2.3. The iteration scheme—a priori control estimates via e

The study of global well-posedness for all three cases of commutator forcing we have in mind—bounded,
singular and local (NS) mollifiers, share a common scheme of establishing control over the key quantities,
even though the handling of the three cases is quite different when it comes to analytic details. In this
section, we highlight those main common features in three steps.

• Step #1 (Pointwise bounds on the density). Our aim is to show that for a certain range of threshold
bounds η− � 0 < η+, the density remains bounded from above and away from the vacuum

0 < ρ− � ρ(·, t) � ρ+ < ∞. (2.8)

In view of transportation of the ratio e/ρ, (2.6), we also have

η− � e(·, t)

ρ(·, t)
� η+, η− � 0. (2.9)

We conclude that the quantity of interest, e = ux + L(ρ), will remain uniformly bounded,

e− := η−ρ+ � e(·, t) � e+ := η+ρ+.

• Step #2 (Pointwise bound on the action L(ρ) and slope ux). Equipped with the uniform bound on e we
turn to establish a bound on the action L(ρ), which is equivalent to controlling the slope ux. In the case
of bounded mollifiers, we seek a point-wise bound on the action L(ρ)

L− � L(ρ) � L+, ρ ∈ L1
+ ∩ L∞. (2.10)

This will imply the desired C1-bound of the velocity

η−ρ+ − L+ � ux(·, t) � η+ρ+ + L−.

For singular fractional mollifiers Lα , we focus on the critical case α = 1, where we use a nonlocal
maximum principle to establish control over ρ ′ which in turn enables us to control ux indirectly, thus
avoiding an additional obstacle coming from the Hilbert transform. For the NS case, we first control the
slope ux via energy bounds, then conclude with control of L(ρ) = ρxx.

It is clear from the fact that the higher-order quantity e satisfies lower-order estimates that a proper
statement of well-posendess result for singular mollifiers requires ρ to be in a regularity class Xs+α

provided u is in the class Xs+1, while e is in the class Xs.

• Step #3 (Higher regularity control). The necessary bounds sought in (2.8) and (2.10) may require a
restricted set of initial configurations depending on finite critical threshold assumed in (2.7). Whether
these thresholds η± are restricted or not, the corresponding bounds will be derived solely on the basis of the
mass equation for ρ, and the fact that e = ux + L(ρ) satisfies the transport equation (2.5). This argument
can be iterated to higher derivatives as follows. Note that if a quantity Q is transported, Qt + uQx = 0,
then the same transport equation governs Qx/ρ(

Qx

ρ

)
t

+ u

(
Qx

ρ

)
x

= 0. (2.11)
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Let us apply this argument to Q = e/ρ: then if |(e/ρ)x|/ρ is bounded at t = 0 it will remain bounded at
later time. Unraveling the formulas, we obtain the point-wise bound

|e′(x, t)| � C(e±, ρ±)|ρ ′(x, t)|. (2.12)

This control bound will become a key tool in proving Theorem 1.3.
Now that (e/ρ)x/ρ is transported, we can apply the argument above repeatedly to obtain a hierarchy

of pointwise bounds

| e(k)(x, t)| � C|ρ(k)(x, t)|, k = 0, 1, . . . (2.13)

It is therefore clear that such bounds would allow to apply the same control principle as stated above in
extending our results into higher order Sobolev spaces. However, we will leave to pursue this direction
to a future work.

3. Bounded density in one-dimensional equations in commutator form

In this section, we implement the above strategy for global regularity in the presence of commutator
forcing, Tφ , depending on the properties of the mollifier φ. We begin with a general discussion on the
boundedness of the density sought in Step #1. Here, the bound (2.8) is driven by the diffusive character
of the mass equation, which is revealed once we rewrite the mass equation of (1.9) in the form

ρt + uρx = −eρ + ρL(ρ). (3.1)

In view of the uniform bound (2.9), we see that eρ ∼ ρ2 behaves as a quadratic term. This implies

−η+ρ2 + ρL(ρ) � ρt + uρx � −η−ρ2 + ρL(ρ). (3.2)

We turn to check step #1 in the three cases of interest. Here and throughout | · |p, 1 � p � ∞, denotes
the Lp-norm.

3.1. Bounded density with bounded mollifiers Lφ , φ ∈ L∞
#

Consider the case of L = Lφ = ∫
φ(|x − y|)(ρ(y) − ρ(x)) dy with φ ∈ L∞

# which is assumed to have a
positive mass

∫
φ(r) dr > 0. We emphasize that φ need not be positive. We verify the boundedness of ρ

using the straightforward bound

−I(φ)ρ − |φ|∞M0 � Lφ(ρ) � −I(φ)ρ + |φ|∞M0, I(φ) :=
∫

φ(r) dr > 0. (3.3)

Inserted into (3.2) we find

−(
η+ + I(φ)

)
ρ2 − |φ|∞M0ρ � ρt + uρx � −(

η− + I(φ)
)
ρ2 + |φ|∞M0ρ.

The inequality on the right shows that the density remains uniformly bounded from above for any η−
satisfying η− > −I(φ), that is, ρ(·, t) � ρ+ provided (2.7) holds for such η−’s,

u′
0(x) + φ ∗ ρ0(x) − I(φ)ρ0(x) � η−ρ0(x), η− > −I(φ). (3.4)

The inequality of the left then shows that along characteristics, ρ̇ � −cρ with c := |φ|∞M0 + (η+ +
I(φ))ρ+, and hence the density is bounded away from vacuum by the lower-bound ρ(t) � e−ct .
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3.2. Bounded density with singular mollifiers Lα , α < 2

To bound the density from above, we consider the case of positive mollifiers which are singular in the
sense that

lim
r↓0

rmφ(r) ↑ ∞, mφ(r) := min
|z|�r

φ(|z|). (3.5)

In this case, we use the bound

L(ρ)(x+) �
∫

|x+−y|�r
φ(|x+ − y|)(ρ(y) − ρ+) dy

� mφ(r)
∫

|x+−y|�r
(ρ(y) − ρ+) dy � mφ(r)M0 − 2rmφ(r)ρ+.

By assumption, for any η− � 0 we can choose a small enough r = r+ such that 2r+mφ(r+) = 1 − η−
and the bound on the right of (3.2) then implies that the maximal value of the density ρ+(t) = ρ(x+(t), t)
satisfies

ρ̇+ � −η−ρ2
+ − 2r+mφ(r+)ρ2

+ + c0ρ+ � −ρ2
+ + c0ρ+, c0 = mφ(r+)M0

Thus, ρ(·, t) remains bounded from above. We conclude that for singular kernels satisfying (3.5) , the
density remains upper-bounded independent of the lower threshold η−. In particular, this applies to
φα(r) = r−(1+α), α < 2.

We turn to the lower bound on the density away from vacuum. For positive φ’s, whether singular or
not, we have3

Lφ(ρ)(x−) =
∫

y
φ(|x− − y|)(ρ(y) − ρ(x−))ρ(y) dy � 0.

Therefore, the inequality on the left of (3.2) implies that minima values of the density, ρ−(t) = ρ(x−(t), t)
at any interior point x−(t) = arg min|y|�R{ρ(y, t)} with |x−| < R, satisfy ρ̇− � −η+ρ2

− and hence
ρ(·, t) > 0. In the particular case of the torus Ω = T

1, we conclude with a uniform lower bound away
from vacuum

ρ(·, t) � ρ−(t) = (ρ0)−
tη+(ρ0)− + 1

, (ρ0)− = min
x∈T1

ρ0(x) > 0. (3.6)

3.3. Bounded density with NS equations L2 = ∂xx

We use the regularization coming from the parabolic part of the mass equation which becomes evident
when (1.13) is written in the form

ρt + uρx + eρ = ρρxx. (3.7)

†This is a special case of the monotonicity condition (2.1) with (f , g) = (1, ρ) implies L(ρ)(x−) � L(1(x−))ρ− = 0.
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Recalling e � η+ρ it implies ρ̇− � −η+ρ2
−, which in turn yields recovers the same lower-bound (3.6).

Trying to pursue the same argument for an upper-bound of the density fails when using the right-hand
side of (3.2). Instead, we note that the quantity f := u + ρx is the primitive of e and hence satisfies the
transport equation ft + ufx = 0. This follows by direct computation of (1.9)

ut + uux = −(ρ ′
t + uρ ′

x).

It follows that

|ρ ′(·, t)| � 2|u0|∞ + |ρ ′
0|∞. (3.8)

Given the uniform bound on ρ ′ and since we already proved that ρ > 0, (3.8) ties the upper bound for ρ

as well. We note in passing that even though we can now express the density equation as a pure diffusion

ρt = ρρxx + F (3.9)

with bounded forcing F = −uρx − ρe ∈ L∞, we can only reach the end-point Schauder estimate
ρxx ∈ BMO (see Schlag, 1996), which is not enough to secure a uniform bound of L(ρ) = ρxx necessary
to get control over the slope ux. We will provide additional details how to reach that bound, which is
needed for the global existence of NS equations in Section 5 below.

4. Global existence: bounded mollifiers, L = Lφ

With regard to Theorem 1.1, it is straightforward to verify Step #2 in the case of bounded mollifiers—in
view of (3.3), the upper bound of ρ implies that L(ρ) is uniformly bounded, |Lφ(ρ)+I(φ)ρ+| � |φ|∞M0,
and hence ux = e − L(ρ) is uniformly bounded. We conclude the global regularity for sub-critical initial
data satisfying (3.4), namely, for a fixed ε > 0 there holds

u′
0(x) + φ ∗ ρ0(x) � ερ0(x), ε > 0.

In the particular case of T
1, this requires the positivity of u′

0 +φ ∗ ρ0 stated in theorem 1.1. This recovers
the same critical threshold of positive mollifiers (1.11).

5. Global existence: Navier–Stokes equations, L = Δ

In this section, we will prove Theorem 1.2. Recall that the boundedness of ρ conveys to boundedness of
e = ux + ρxx, via

|e(x, t)| � η|ρ(x, t)|, η := max{−η−, η+} (5.1)

and that ρ satisfies further a priori C1-regularity (3.8). Note that these low-regularity a priori bounds
hold classically under the assumptions u ∈ H2, ρ ∈ H3, which are the spaces for which Theorem 1.2 is
stated, and these are the lowest Hn-regularity spaces of integer order that justify the above computations.
We now proceed by establishing a priori estimates in these spaces.

First, let us quantify control over the high-order regularity of e.
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Lemma 5.1 For each n = 0, 1, ... we have the following a priori estimate

∂t|e|2Hn � C(| e|2Hn + |u|2
Hn+1)(|ux|∞ + |e|∞). (5.2)

Proof. For n = 0 the Lemma follows easily by testing the e equation (2.4). For n = 1, ..., let us
differentiate (2.4) n times and test with e(n). We obtain (dropping the integral signs)

∂t| e(n)|22 � u e(n+1) e(n) +
n+1∑
k=1

u(k) e(n+1−k) e(n).

For the first term, we integrate by parts to obtain trivially |u e(n+1) e(n)| � |ux|∞| e|2Hn . For each of the
remaining terms on the right, k = 1, . . . , n + 1, we apply Gagliardo–Nirenberg inequalities, |∂ if | 2n

i
�

| f |1− i
n∞ | f | i

n
Hn , 1 � i � n, obtaining

|u(k) e(n+1−k) e(n)| � | e(n)|2|u(k−1)
x | 2n

k−1
| e(n+1−k)| 2n

n+1−k

� | e(n)|2|ux|1− k−1
n∞ |ux|

k−1
n

Hn | e|1− n+1−k
n∞ | e| n+1−k

n
Hn

� | e(n)| 2n+1−k
n

2 |ux|
k−1

n
Hn |ux|1− k−1

n∞ | e|1− n+1−k
n∞

and by Young’s inequality |u(k) e(n+1−k) e(n)| � (| e|2Hn + |u|2
Hn+1)(|ux|∞ + |e|∞) which completed the

proof. �

We now proceed establishing bounds on ux and uxx in a sequence of increasing norms, which eventually
will close the estimates together with Lemma 5.1. Recall

ut + uu′ = ρu′′ + 2ρ ′u′. (5.3)

Testing with u and using (3.8) we obtain

1

2
∂t|u|22 = −

∫
ρ|u′|2 +

∫
ρ ′uu′ � −1

2

∫
ρ|u′|2 + 1

2
C2

1 |u|22, C1 = 2|u0|∞ + |ρ ′
0|∞.

This proves the natural energy bound u ∈ L∞
t L2

x ∩ L2
t H1

x . Next, we test with −u′′ to obtain (dropping the
integrals)

1

2
∂t|u′|22 = |uu′u′′| − ρ|u′′|2 + 2|ρ ′u′u′′| � −1

2
ρ|u′′|2 + |u|2|u′|2 + |ρ ′|2|u′|2.

Using uniform bound on u and (3.8),

1

2
∂t|u′|22 � −1

2
ρ−|u′′|22 + C2|u′|22, ρ− = min ρ(·, t) > 0,

which implies u ∈ L∞
t H1

x ∩ L2
t H2

x . In particular, this implies |ux(·, t)|∞ ∈ L1, and hence the estimates
on H1-norm of e from Lemma 5.1 closes with an integrable multiplier on the right hand side of (5.2).
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It remains to establish a further similar bound on |u′′|2 to close the estimate on the grand quantity
|u′′|22 + |e′|22 ∼ |u′′|22 + |ρ|2

H3 . So, we differentiate (5.3) twice and test with u′′:

1

2
∂t|u′′|22 + 5

2
u′u′′u′′ = −(ρu′′)′u′′′ + 2ρ ′′′u′u′′ + 4ρ ′′u′′u′′ + 2ρ ′u′′′u′′

= −ρ|u′′′|2 + ρ ′u′′′u′′ + 2ρ ′′′u′u′′ + 4ρ ′′u′′u′′.

So,

1

2
∂t|u′′|22 � |ux|∞|u′′|22 − 1

2
ρ−|u′′′|22 + |ρ ′|∞|u′′|22 + |ux|∞|ρ ′′′|2|u′′|2 + 4|e − ux|∞|u′′|22

� −1

2
ρ−|u′′′|22 + |ux|∞(| e′|22 + |u′′|22).

Given the established integrability of |ux|∞ and Lemma 5.1 we have proved boundedness in H2 for u,
and H3 for ρ.

6. Global existence: singular mollifiers L = Lα , 1 � α < 2

In this section, we prove global regularity result for the equation with fractional L = −Λα in space of
data H3 ×H2+α . The case α = 1 is critical similar to the classical fractional Burgers equation, (Kiselev et
al., 2008; Caffarelli & Vasseur, 2010; Constantin & Vicol, 2012) but with additional nonlinearity in the
dissipation term. We will leave the subcritical case α > 1 as an easy consequence of the proof presented
here for the case α = 1. Note that with the initial datum (u0, ρ0) in H3 we can avoid making assumptions
on e0 as e0 ∈ H2 ⊂ C1+γ for any γ < 1/2 by the Sobolev embedding. With this we recall a priori
uniform bounds from the previous section,

sup
0<t<T

|e|∞ < ∞, 0 < ρ− � ρ(x, t) � ρ+, u− � u(x, t) � u+ (6.1)

on any finite time interval of existence. The lower bound on the density is the main reason why we resort
to the periodic domain. In the open space such bound is only known to hold on any finite interval, lacking
a uniform parabolicity to the system.

Moreover, for a solution in H3 the transport equation (2.11) for Q = e/ρ can be solved classically
along characteristics of u which results in the bound (2.12) which we quote for convenience

|ex(x, t)| � C|ρx(x, t)|, for all (x, t) ∈ [0, T) × T. (6.2)

The proof will consist of four steps. First, we establish the local existence in H3 by obtaining rough
a priori bounds without exploiting dissipation term. This allows to perform classical desingularization
of the kernel as an approximate scheme to obtain local solutions. Second, we establish uniform control
over first order quantities |ρx|∞, |ux|∞ over the interval of regularity. The strategy here resembles the
treatment of the critical SQG by Constantin & Vicol (2012), but with additional technicalities related to
the nonlinear nature of the dissipation term. We then invoke the results of Schwab & Silvestre (2012)
to obtain instantaneous Cγ -regularization and use it to have an easier control on the oscillations in the
midrange of scales of the nonlinearity. Third, we establish uniform control over H2 norm of solutions
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by proving an analogue of the Beale–Kato–Majda estimates. With the H2 and W 1,∞ bounds, we finally
conclude by a proving a uniform control of the penultimate H3-norm of the solution on the entire interval
of existence.

It will be useful to introduce the following notation. For three functions f , g, h of x, z we denote

Φ(f , g, h) := 1

2

∫∫
f (x, z)g(x, z)h(x, z)

|z|2 dz dx.

Moreover, for a cutoff function ϕ and parameter r > 0 we denote

Φ<r(f , g, h) = 1

2

∫∫
f (x, z)g(x, z)h(x, z)

|z|2 ϕ(z/r) dz dx

Φ>r(f , g, h) = 1

2

∫∫
f (x, z)g(x, z)h(x, z)

|z|2 (1 − ϕ(z/r)) dz dx.

In the sequel we will also use the following notation δzf (x) = f (x + z) − f (x), and the expansion

δzf (x) = f ′(x)z + z2

∫ 1

0
(1 − θ)f ′′(x + θz) dθ . (6.3)

6.1. Local well-posedness in H3: a priori estimates without the use of dissipation

The purpose of this section is to obtain a priori estimates in H3 which do not rely on the dissipation
term. Namely, we will obtain the classical Riccati equation for the quantity Y = |u|H3 + |ρ|H3 ∼
|u|H3 + |e|H2 + |ρ|2:

Yt � CY 2,

which is independent of desingularization of the kernel Kδ = 1

(|z|2+δ2)
n+1

2
. This allows to conclude local

existence via the classical approximation methods.
Let us write the equation for u′′′:

u′′′
t + uu′′′

x + 4u′u′′′ + 3u′′u′′ = T (ρ ′′′, u) + 3T (ρ ′′, u′) + 3T (ρ ′, u′′) + T (ρ, u′′′). (6.4)

Testing with u′′′ we obtain (we suppress integral signs and note that
∫

u′′u′′u′′′ = 0)

∂t|u′′′|22 = −7u′(u′′′)2 + 2T (ρ ′′′, u)u′′′ + 6T (ρ ′′, u′)u′′′ + 6T (ρ ′, u′′))u′′′ + 2T (ρ, u′′′)u′′′. (6.5)

We will now perform several estimates with the purpose of extracting term |u′′′|22 on the right hand side,
times a lower order term in u and possibly a top order term in ρ which we will address subsequently.
First, we have trivially

|u′(u′′′)2| � |u′|∞|u′′′|22. (6.6)



R. SHVYDKOY AND E. TADMOR 14

Let us estimate the dissipative term first:

∫
T (ρ, u′′′)u′′′dx =

∫∫
ρ(y)u′′′(x)(u′′′(y) − u′′′(x))

dy dx

|x − y|2 .

Switching x and y and adding cross-terms ρ(x)u′′′(x) we obtain

∫
T (ρ, u′′′)u′′′dx = −1

2

∫∫
ρ(x)(u′′′(y) − u′′′(x))2 dy dx

|x − y|2

+ 1

2

∫∫
u′′′(x)(ρ(y) − ρ(x))(u′′′(y) − u′′′(x))

dy dx

|x − y|2 .

The first term is clearly negative. We note in passing that it is bounded below by

∫∫
ρ(x)(u′′′(y) − u′′′(x))2 dy dx

|x − y|2 � ρ−|u′′′|2
H1/2 .

While it is undoubtedly a crucial piece of information, it does depend on the fact that the kernel is singular.
As we indicated earlier, however, we seek estimates that are independent of singularity. So, at this point
we will simply dismiss the dissipation term. As to the second term, we rewrite it as

∫∫
u′′′(x)(ρ(y) − ρ(x))(u′′′(y) − u′′′(x))

dy dx

|x − y|2 = Φ(u′′′, δzρ, δzu
′′′).

We estimate the large-scale part of the integral using integrability of |z|−2 at infinity as follows

Φ>1(u
′′′, δzρ, δzu

′′′) � |ρ|∞|u′′′|22. (6.7)

As to the small scale, we use the expansion (6.3) on ρ. We have

Φ<1(u
′′′, δzρ, δzu

′′′) =
∫∫

ϕ(z)u′′′(x)ρ ′(x)δzu
′′′(x)

dz dx

z

+
∫ 1

0
(1 − θ)

∫∫
ϕ(z)u′′′(x)ρ ′′(x + θz)δzu

′′′(x) dz dx dθ .

Writing the first integral in the principal value sense results in the cancellation

∫∫
ϕ(z)u′′′(x)ρ ′(x)u′′′(x)

dz dx

z
= 0,

while

∫∫
ϕ(z)u′′′(x)ρ ′(x)u′′′(x + z)

dz dx

z
=

∫
u′′′(x)ρ ′(x)Hϕ(u

′′′)(x) dx,
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where Hφ is the truncated Hilbert transform given by convolution with the kernel ϕ(z)
z . It is a bounded

operator on L2. We thus have the estimate∣∣∣∣
∫

u′′′(x)ρ ′(x)Hϕ(u
′′′)(x) dx

∣∣∣∣ � |ρ ′|∞|u′′′|22.

Putting the estimates together, we arrive at the bound∫
T (ρ, u′′′)u′′′ dx � C|u′′′|22(|ρ|∞ + |ρ ′|∞). (6.8)

We now proceed with the remaining three terms in (6.5) in a similar fashion. We have

T (ρ ′′′, u)u′′′ = Φ(ρ ′′′(· + z), u′′′, δzu) = Φ>1(ρ
′′′(· + z), u′′′, δzu) + Φ<1(ρ

′′′(· + z), u′′′, δzu)

� |u′′′|2|ρ ′′′|2|u|∞ +
∫

Hϕ(ρ
′′′)(x)u′′′(x)u′(x) dx

+
∫ 1

0
(1 − θ)

∫∫
ρ ′′′(x + z)u′′′(x)u′′(x + θz)ϕ(z) dz dx dθ

� |u′′′|2|ρ ′′′|2(|u|∞ + |u′|∞ + |u′′|∞).

T (ρ ′′, u′)u′′′ = Φ(ρ ′′(· + z), u′′′, δzu
′) = Φ>1(ρ

′′(· + z), u′′′, δzu
′) +

∫
Hϕ(ρ

′′)(x)u′′′(x)u′′(x) dx

+
∫ 1

0
(1 − θ)

∫∫
ρ ′′(x + z)u′′′(x)u′′′(x + θz)ϕ(z) dz dx dθ

� |u′′′|2|ρ ′′|2|u′|∞ + |u′′′|2|ρ ′′|2|u′′|∞ + |u′′′|22|ρ ′′|∞
= |u′′′|22|ρ ′′|∞ + |u′′′|2|ρ ′′|2(|u′|∞ + |u′′|∞).

And the last term requires more preparation,

T (ρ ′, u′′)u′′′ =
∫∫

ρ ′(y)u′′′(x)(u′′(y) − u′′(x))
dy dx

|x − y|2

= 1

2

∫∫
(ρ ′(y)u′′′(x) − ρ ′(x)u′′′(y))(u′′(y) − u′′(x))

dy dx

|x − y|2

= 1

2

∫∫
(ρ ′(y) − ρ ′(x))u′′′(x)(u′′(y) − u′′(x))

dy dx

|x − y|2

+ 1

2

∫∫
ρ ′(x)(u′′′(x) − u′′′(y))(u′′(y) − u′′(x))

dy dx

|x − y|2

= 1

2
Φ(δzρ

′, u′′′, δzu
′′) − 1

2
Φ(ρ ′, δzu

′′′, δzu
′′)

= 1

2
Φ>1(δzρ

′, u′′′, δzu
′′) + 1

2

∫∫
ϕ(z)ρ ′′(x)u′′′(x)δzu

′′(x)
dz

z
dx

+ 1

2

∫ 1

0
(1 − θ)

∫∫
ϕ(z)ρ ′′′(x + θz)u′′′(x)δzu

′′(x) dz dx dθ
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− 1

4

∫∫
ρ ′(x)((δzu

′′(x))2)′ dz

|z|2 dx

� |ρ ′|∞|u′′′|2|u′′|2 + |ρ ′′|∞|u′′′|2|u′′|2 + |ρ ′′′|2|u′′′|2|u′′|∞ + 1

4

∫∫
ρ ′′(x)(δzu

′′(x))2 dz

|z|2 dx.

The latter integral is bounded by |ρ ′′|∞|u′′|2
Ḣ1/2 � |ρ ′′|∞|u′′′|2|u′′|∞. Putting the obtained estimates together

we obtain

∂t|u′′′|22 � C|u′′′|22(|u′|∞ + |ρ|∞ + |ρ ′|∞ + |ρ ′′|∞)

+ |u′′′|2(|ρ ′′|2 + |ρ ′′′|2 + |ρ ′′|∞)(|u|∞ + |u′|∞ + |u′′|∞)

+ |u′′′|2|u′′|2(|ρ ′|∞ + |ρ ′′|∞).

(6.9)

Finally, by Sobolev embedding, |u′′|2 + |u|∞ + |u′|∞ + |u′′|∞ � C(|u′′′|2 + |u|2), and |ρ|∞ + |ρ ′|∞ +
|ρ ′′|∞ + |ρ ′′|2 � C(|ρ ′′′|2 + |ρ|2) which results in the bound

∂t|u′′′|22 � (|u′′′|2 + |u|2)2(|ρ ′′′|2 + |ρ|2) + (|u′′′|2 + |u|2)3. (6.10)

To control the energy |u|2 we avoid using the natural balance relation (1.8). Instead we test (1.1) directly
with u. Performing much the same estimates as above we obtain, for example,

∂t|u|22 � |u|∞|u|2|ρ|2 + |ρ ′|2|u′|2|u|∞.

Putting this together with (6.10) we obtain the Riccati equation for the H3-norm:

∂t|u|H3 � |u|H3 |ρ|H3 + |u|2
H3 . (6.11)

In order to close the estimates we now have to find a similar bound on the H3-norm of ρ. This cannot
be done directly by manipulating with the density transport equation. Instead we will make use of the
transport of the first order quantity e, in terms of which we will provide the final estimates. Let us note
the inequality

|ρ|H3 � |u|H3 + |e|H2 + |ρ|2.

Thus,

∂t|u|H3 � |u|H3(|e|H2 + |ρ|2) + |u|2
H3 . (6.12)

From Lemma 5.1, we have the bound on |e|H2 :

∂t|e|H2 � C(|e|H2 + |u|H3)
2. (6.13)

And the similar bound holds for |ρ|2. We have obtained the classical Riccati equation for the quantity
Y = |u|H3 + |e|H2 + |ρ|2:

Yt � CY 2.

Note that Y ∼ |u|H3 +|ρ|H3 , hence we have proved necessary a priori bound for the local well-posedness
in H3.
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6.2. Control over |ux|∞ and |ρx|∞ on intervals of regularity

Suppose that we have a classical solution (u, ρ) ∈ C([0, T); H3) as proved to exist in the previous section.
We now seek to establish a uniform bound on |ux|∞ and |ρx|∞ on the entire interval [0, T). First, let us
recall that we have already established a priori uniform bounds of e, ρ and u in terms of the finite initial
quantities e±, ρ± and u±, consult (6.1). Next, as we noted the density ρ satisfies a parabolic form of the
density equation:

ρt + uρx + eρ = ρL(ρ). (6.14)

Similarly, one can write the equation for the momentum m = ρu:

mt + umx + em = ρL(m). (6.15)

Note that in both cases the drift u and the forcing eρ or em are bounded a priori. Moreover, the diffusion
operator has kernel

K(x, h, t) = ρ(x)
1

|h|2

which satisfies all the assumptions of Schwab & Silvestre (2012). A direct application of Schwab &
Silvestre (2012) tells us that there exists an γ > 0 such that

|ρ|Cγ (T×[T/2,T)) � C(|ρ|L∞(0,T) + |ρe|L∞(0,T))

|m|Cγ (T×[T/2,T)) � C(|m|L∞(0,T) + |me|L∞(0,T))

|u|Cγ (T×[T/2,T)) � C(|u|L∞(0,T), |ρ|L∞(0,T)),

(6.16)

where the latter follows from the first two since ρ is bounded below. Of course, since u, ρ are in H3

on [0, T) this implies Cγ -bound on the entire interval of regularity, however we need the bound to be
independent of H3, which may blow up, in the second half of it. It is also interesting to note that the
original equation for u has a kernel K(x, h, t) = ρ(x + h) 1

|h|2 not even with respect to h, so no known
results on regularization are directly applicable to the u-equation.

Remark 6.1 In regard to higher-order regularization via Schauder, we make the following observation.
For Q = e/ρ, we recall that Qx was shown to be under control (note that this still doesn’t imply that
either ex or ρx are under control). Hence, trivially, |Q|Cγ remains bounded at all times. Denote

δhQ(x) = Q(x + h) − Q(x)

|h|γ

and note

δhQ(x) = δhe(x)

ρ(x + h)
+ e(x)δhρ(x)

ρ(x + h)ρ(x)
.
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Since ρ is Cγ and bounded away from zero this implies that e ∈ Cγ with |e(t)|Cγ � C/tγ . With this in
mind, we now have the momentum equation in the form

mt + b(x)mx + a(x)Λm = F,

where the drift b, the coefficient function a and the source F are all in Cγ . As of this writing there has
been no known Schauder-type bounds proved for an equation in such generality despite many recent
developments in that cover partial cases (see Chang-Lara & Kriventsov, 2015; Dong & Zhang, 2015;
Schwab & Silvestre, 2012; Jin & Xiong, 2015). The question presents an independent interest and we
will address it in subsequent work.

Let us now establish control over ρ ′. We write

∂tρ
′ + uρ ′′ + u′ρ ′ + e′ρ + eρ ′ = −ρ ′Λρ − ρΛρ ′.

Using again u′ = e + Λρ we rewrite

∂tρ
′ + uρ ′′ + e′ρ + 2eρ ′ = −2ρ ′Λρ − ρΛρ ′.

Let us evaluate it at the maximum of ρ ′ and multiply by ρ ′ again (we use the classical Rademacher
theorem here to justify the time derivative):

∂t|ρ ′|2 + e′ρρ ′ + 2e|ρ ′|2 = −2|ρ ′|2Λρ − ρρ ′Λρ ′. (6.17)

In view of (6.1) and (6.2) we can bound

|e′ρρ ′ + 2e|ρ ′|2| � C|ρ ′|2.

Next, using the nonlinear bounds from Constantin & Vicol (2012), we have

ρρ ′Λρ ′ � 1

4
ρ−Dρ ′(x) + c

ρ−
ρ+

|ρ ′|3∞ � c1Dρ ′(x) + c2|ρ ′|3∞, (6.18)

where

Dρ ′(x) =
∫

R

|ρ ′(x) − ρ ′(x + z)|2
|z|2 dz.

Using smooth decompositions of the underlying R in all of the below we have

Λρ(x) = Hρ ′ =
∫

|z|<r

ρ ′(x + z) − ρ ′(x)
z

dz −
∫

r<|z|<2π

ρ(x + z) − ρ(x)

|z|2 dz

−
∫

2π<|z|

ρ(x + z) − ρ(x)

|z|2 dz.
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The latter is clearly bounded by a constant c3 depending only on ρ−, which in (6.17) results simply in
the bound c3|ρ ′|2∞. The first is bounded, via Hölder, by

|ρ ′|2∞
√

rD1/2ρ ′(x) � 1

2
c1Dρ ′(x) + c4r|ρ ′|4∞.

Note that this term gets absorbed by the dissipation (6.18) entirely if

r = c2

4c4|ρ ′|∞ .

The integral in the middle is bounded by, using Cγ -regularity,

|ρ ′|2∞|ρ|Cγ /r1−γ = c5|ρ ′|3−γ
∞ � c6 + c2

4
|ρ ′|3∞,

where the cubic term again is absorbed by the dissipation. Putting the estimates together we obtain

∂t|ρ ′|2 � c6 + c3|ρ ′|2 − c7Dρ ′(x), (6.19)

which establishes the claimed control of ρ ′. We intentionally keep the dissipation term as it still will be
used on the next step to absorb other terms.

Now we can do the same for the momentum derivative mx. Clearly it is sufficient to finish the proof
for ux as well. Note that the equation for momentum is similar, so we will skip details that are similar.
We have

∂tm
′ + um′′ + u′m′ + e′m + em′ = −ρ ′Λm − ρΛm′.

Evaluating at maximum, multiplying by m′, and using bounds on e, e′ we have

∂t|m′|2 � c8(|m′|2∞ + |ρ ′|∞|m′|∞) + |m′|2|Λρ| + |ρ ′||m′||Λm| − c9Dm′(x) − c10|m′|3∞. (6.20)

As to |ρ ′||m′||Λm| we proceed as before, losing ρ ′ in view of already established control over it. We
obtain the bound simply by taking r = 1:

c11|m′| + |m′|D1/2m′(x) � c11|m′| + c12|m′|2 + c9

4
Dm′(x)

with the latter being absorbed again in the dissipation. As to the term |m′|2|Λρ| we still proceed as before,
however in the mid-range integral r < |z| < 2π we use the full force of the obtained bound on ρ ′. This
results in logarithmic optimization bound

|m′|2|Λρ| � c13|m′|2(1 + ln r + √
rD1/2ρ ′(x)).

Ignoring the trivial quadratic term |m′|2, we have

c13|m′|2 ln r + c13|m′|2√rD1/2ρ ′(x) � c13|m′|2 ln r + c14|m′|4r + c7

2
Dρ ′(x).
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Notice that the latter will be absorbed by the dissipation term in (6.19) when we add the two equations
together. Choosing

r = c10

2c14|m′| ,

we obtain for the ln r and r-terms above the bound

c15|m′|2 ln |m′| + c10

2
|m′|3

with the latter being absorbed into the cubic term in (6.20). Altogether we have

∂t|m′|2 � c16|m′|2(1 + ln+ |m′|) + c7

2
Dρ ′(x). (6.21)

We now have to add the two equations (6.21) and (6.19) together to absorb the residual Dρ ′-term and
obtain the final bound

∂t(|m′|2 + |ρ ′|2) � c17(|m′|2 + |ρ ′|2)(1 + ln+(|m′|2 + |ρ ′|2)). (6.22)

This implies double-exponential, but finite, bound on the given interval. This also finishes the proof.

6.3. Control over H2 via W1,∞

In this section, we will establish an estimate on the H2-norm of the solution

X = |u′′|22 + |ρ ′′|22 ∼ |u′′|22 + |e′|22
in terms of |ux|∞ is a manner similar to the Beale–Kato–Majda criterion. Namely, we will prove

X ′ � C(1 + |u′|∞)X(1 + log+ X). (6.23)

Given the result of the previous section, this establishes uniform bound in H2 on the interval of existence
[0, T) of an H3-solution. The equation for u′′ reads

u′′
t + uu′′

x + 3u′u′′ = T (ρ ′′, u) + 2T (ρ ′, u′) + T (ρ, u′′).

Testing with u′′ the local terms , after integration by parts , become bounded by X|u′|∞ trivially. We now
look into key estimates for the right-hand side. We will start with what proved to be the most involved
term in the previous section. We skip the standard symmetrization and addition of cross-product terms
in the calculations below and typically display the final representations. We have∫∫

T (ρ ′, u′)u′′ dx dy = Φ(δzρ
′, δzu

′, u′′) + Φ(ρ ′, δzu
′, δzu

′′). (6.24)

For the second term, we have δzu′δzu′′ = 1
2 ((δzu′)2)x. So, switching the derivative onto ρ ′ we obtain

Φ(ρ ′, δzu
′, δzu

′′) = −1

2
Φ(ρ ′′, δzu

′, δzu
′).
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Now, we bound small and large scale parts as follows

|Φ>r(ρ
′′, δzu

′, δzu
′)| � 1

r
|ρ ′′|2|u′|24

and

|Φ<r(ρ
′′, δzu

′, δzu
′)| �

√
r|ρ ′′|2|u′|2

W3/4,4 ,

where in the latter we used the Hölder and Gagliardo–Sobolevskii definition of W 3/4,4 space. Optimizing
over r we obtain

|Φ(ρ ′, δzu
′, δzu

′′)| � |ρ ′′|2|u′|2/3
4 |u′|4/3

W3/4,4

and by Gagliardo–Nirenberg,

|u′|W3/4,4 � |u′′|1/2

H1/2 |u′|1/2
∞ ,

and interpolation we obtain

|Φ(ρ ′, δzu
′, δzu

′′)| � |ρ ′′|2|u′|2/3
4 |u′|2/3

∞ |u′′|2/3

H1/2 � 1

ε
|ρ ′′|3/2

2 |u′|4|u′|∞ + ε|u′′|2
H1/2 .

With ε < ρ−/2 the last term is absorbed by the dissipation. Finally, by Gagliardo–Nirenberg we have

|u′|4 � |u′′|1/2
2 |u|1/2

∞ . (6.25)

Recalling that |u|W1,∞ is under control, we finally obtain

|Φ(ρ ′, δzu
′, δzu

′′)| � C|ρ ′′|3/2
2 |u′′|1/2

2 |u′|∞ + ε|u′′|2
H1/2 � CX + ε|u′′|H1/2 .

For the other term Φ(δzρ
′, δzu′, u′′) the splitting is necessary but optimization is not. We have, in view of

(6.25),

Φ>1(δzρ
′, δzu

′, u′′) � |ρ ′|4|u′|4|u′′|2 � |ρ ′′|1/2
2 |u′′|3/2

2 � X.

As to Φ<1, we write δzu′(x) = δzu′(x)−zu′′(x)+zu′′(x), and note that |δzu′(x)−zu′′(x)| � |z|3/2D1/2u′′(x).
So, we have

|Φ<1(δzρ
′, δzu

′, u′′)| �
∣∣∣∣
∫

Hϕρ
′(x)|u′′(x)|2dx

∣∣∣∣ + |ρ ′|∞|Du′′|2|u′′|2

� |Hϕρ
′|∞|u′′|22 + 1

ε
|ρ ′|2∞|u′′|22 + ε|u′′|2

H1/2 .

Note that since Hϕ is a bounded Fourier multiplier, by the log-Sobolev inequality, we have

|Hϕρ
′|∞ � |ρ ′|∞(1 + log+ |ρ ′′|2) � |ρ ′|∞(1 + log+ X).
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So,

|Φ<1(δzρ
′, δzu

′, u′′)| � C(1 + |ρ ′|∞ + |ρ ′|2∞ + |u′|∞)X(1 + log+ X) + ε|u′′|2
H1/2 .

Taking into account the control over W 1,∞ norms, we have proved the bound

|T (ρ ′, u′)u′′| � CX(1 + log+ X) + ε|u′′|H1/2 .

Next, let us bound the dissipation term

∫∫
T (ρ, u′′)u′′ dy dx = −Φ(ρ, δzu

′′, δzu
′′) + Φ(δzρ, δzu

′′, u′′).

Obviously,

Φ(ρ, δzu
′′, δzu

′′) � ρ−|u′′|2
H1/2 .

As to Φ(δzρ, δzu′′, u′′) we have

Φ>r(δzρ, δzu
′′, u′′) � 1

r
|u′′|22

and

Φ<r(δzρ, δzu
′′, u′′) � |ρ ′|∞

∫
R

|u′′(x)|
∫

|z|<2r

∣∣∣∣δzu′′

z

∣∣∣∣ dz dx �
√

r|ρ ′|∞|u′′|2|u′′|H1/2 .

Optimizing we obtain

Φ(δzρ, δzu
′′, u′′) � |ρ ′|2/3

∞ |u′′|4/3
2 |u′′|2/3

H1/2 � ε|u′′|2
H1/2 + 1

ε
|ρ ′|∞|u′′|22

� ε|u′′|2
H1/2 + CX(1 + log+ X),

which closes the estimates with the help of dissipation.
It remains to estimate the last term. By switching x and y we obtain

∫∫
T (ρ ′′, u)u′′ dydx =

∫∫
ρ ′′(x)(u(x) − u(y))u′′(y)

dy dx

|x − y|2

=
∫∫

ρ ′′(x)(u(x) − u(y))(u′′(y) − u′′(x))
dy dx

|x − y|2

+
∫∫

ρ ′′(x)u′′(x)(u(x) − u(y))
dy dx

|x − y|2

= Φ(ρ ′′, δzu, δzu
′′) +

∫
ρ ′′u′′Λ(u) dx.

(6.26)
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Clearly, by the log-Sobolev inequality,

∣∣∣∣
∫

ρ ′′u′′Λ(u) dx

∣∣∣∣ � |ρ ′′|2|u′′|2|Λu|∞ � |u′|∞X(1 + log+ X).

For the F-term, we have

|Φ>r(ρ
′′, δzu, δzu

′′)| � 1

r
|ρ ′′|2|u′′|2,

while

|Φ<r(ρ
′′, δzu, δzu

′′)| � |u′|∞
∫

|ρ ′′(x)|
∫

|z|<2r

|δzu′′(x)|
|z| dz dx � |u′|∞

√
r|ρ ′′|2|u′′|H1/2 .

Optimizing, we get

|Φ(ρ ′′, δzu, δzu
′′)| � |ρ ′′|2|u′′|1/3

2 |u′|2/3
∞ |u′′|2/3

H1/2 � ε|u′′|2
H1/2 + 1

ε
|ρ ′′|3/2

2 |u′′|1/2
2 |u′|∞ � CX.

We have proved that

∂t|u′′|22 � −ε|u′′|2
H1/2 + CX(1 + log+ X).

As to quantity e, we apply Lemma 5.1 to obtain

∂t|e′|22 � CX.

Putting the estimates together, (6.23) follows.

6.4. Control over H3 via H2 and W1,∞

For a given classical solution (u, ρ) ∈ C([0, T); H3) we have established uniform bounds on |ux, ρx|∞
and |u, ρ|H2 on the entire interval [0, T). We now seek to establish final control over the H3-norms. Note
that we already have estimate (6.13) which with the new information readily implies

∂t|e′′|22 � |e′′|22 + |u′′′|22.

Now we get to bounds on |u′′′|22. Not surprisingly all of the estimates mimic the already obtained sharper
estimates for H2 with the use of dissipation. In what follows we will indicate necessary changes and
refer to appropriate places in Section 6.3 for details. Also, we will drop from the estimates all quantities
that are already known to be bounded, such as |u, ρ|H2 , etc. Thus, following (6.4) we can see that all the
terms on the left hand side obey the bound by |u′|∞|u′′′|22 � |u′′′|22. We are left with the four terms on the
right-hand side:

T (ρ ′′′, u)u′′′, T (ρ ′′, u′)u′′′, T (ρ ′, u′′)u′′′, T (ρ, u′′′)u′′′.
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First, the dissipation term obeys the same bound (6.8) where we now keep the dissipation :

∫
T (ρ, u′′′)u′′′ dx � −ρ−|u′′′|2

H1/2 + C|u′′′|22(|ρ|∞ + |ρ ′|∞) � −ρ−|u′′′|2
H1/2 + C|u′′′|22. (6.27)

Next, the term T (ρ ′′′, u)u′′′ will be estimated in the same way as (6.26) with replacements ρ ′′ → ρ ′′′,
u′′ → u′′′. We have the bound

|T (ρ ′′′, u)u′′′| � |ρ ′′′|2|u′′′|2|Λu|∞ + ρ−
10

|u′′′|2
H1/2 + 10

ρ−
|ρ ′′′|3/2

2 |u′′′|1/2
2 .

Since |Λu|∞ � |u|H2 < C and |ρ ′′′|2 � |e′′|2 + |u′′′|2 we have

|T (ρ ′′′, u)u′′′| � |e′′|22 + |u′′′|22 + ρ−
10

|u′′′|2
H1/2 .

Next, the term T (ρ ′′, u′)u′′′ will also be estimated as in (6.26) with a simple replacement u → u′, i.e.,
raising the derivative of u by one on every step. We obtain directly,

|T (ρ ′′, u′)u′′′| � |ρ ′′|2|u′′′|2|Λu′|∞ + ε|u′′′|2
H1/2 + 1

ε
|ρ ′′|3/2

2 |u′′′|1/2
2 |u′′|∞.

Dropping |ρ ′′|2 and using that |Λu′|∞, |u′′|∞ � |u|H3 , we obtain

|T (ρ ′′, u′)u′′′| � ρ−
10

|u′′′|2
H1/2 + |u|2

H3 � ρ−
10

|u′′′|2
H1/2 + C + |u′′′|22.

Finally, the term T (ρ ′, u′′)u′′′ can be estimates as term (6.24) by raising the derivative of u by one and
with the use of boundedness of |ρ ′′|2, |ρ ′|∞. We obtain

|T (ρ ′, u′′)u′′′| � ε|u′′′|2
H1/2 + 1

ε
|ρ ′′|3/2

2 |u′′|4|u′′|∞ + |ρ ′′|1/2
2 |u′′′|3/2

2

+
∣∣∣∣
∫

u′′(x)Hρ ′(x)u′′′(x) dx

∣∣∣∣ + |ρ ′|∞|u′′′|22.

We have trivially, |u′′|4|u′′|∞ � |u|2
H3 , and

∣∣∣∣
∫

u′′(x)Hρ ′(x)u′′′(x) dx

∣∣∣∣ � |u′′|2|u′′′|2|Hρ ′|∞ � |u′′′|2|Hρ ′′|2 � |u′′′|2.

This completes the estimate for the H3-norm Y : Y ′ � CY on the time interval of existence. This completes
the proof.
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